International AWS Certified Data Engineering - Associate

International AWS Certified Data Engineering - Associate

Módulos

Módulo I: Bienvenido a AWS Academy Data Engineering

  • Requisitos previos y objetivos del curso
  • Resumen del curso

  • Decisiones basadas en datos
  • El canal de datos: infraestructura para decisiones basadas en datos
  • El papel del ingeniero de datos en las organizaciones basadas en datos
  • Estrategias de datos modernas
  • Laboratorio: Acceso y análisis de datos mediante Amazon S3
  • Verificación de conocimientos

  • Las cinco V de los datos: volumen, velocidad, variedad, veracidad y valor
  • Volumen y velocidad
  • Variedad tipos de datos
  • Variedad fuentes de datos
  • Veracidad y valor
  • Actividades para mejorar la veracidad y el valor
  • Actividad: Planificación de su canalización
  • Verificación de conocimientos

  • Marco y lentes de buena arquitectura de AWS
  • Actividad: Uso del marco de buena arquitectura
  • La evolución de las arquitecturas de datos
  • Arquitectura de datos moderna en AWS
  • Canalización de arquitectura de datos moderna: ingesta y almacenamiento
  • Canalización de arquitectura de datos moderna: procesamiento y consumo
  • Canalización de análisis de streaming
  • Laboratorio: Consulta de datos mediante Athena - Verificación de conocimientos

  • Revisión de seguridad en la nube 
  • Seguridad de las cargas de trabajo de análisis
  • Seguridad del aprendizaje automático
  • Escalado: descripción general
  • Crear una infraestructura escalable
  • Creación de componentes escalables
  • Verificación de conocimientos

  • Comparación de ETL y ELT
  • Introducción a la manipulación de datos
  • Descubrimiento de datos
  • Estructuración de datos
  • Limpieza de datos
  • Enriquecimiento de datos
  • Validación de datos
  • Publicación de datos
  • Verificación de conocimientos

  • Comparación de la ingesta de lotes y flujos
  • Procesamiento de ingesta por lotes
  • Herramientas de ingesta diseñadas específicamente
  • AWS Glue para procesamiento de ingesta por lotes
  • Consideraciones de escala para el procesamiento por lotes
  • Laboratorio: realización de ETL en un conjunto de datos mediante AWS Glue
  • Kinesis para procesamiento de flujos
  • Consideraciones de escala para el procesamiento de flujos
  • Ingesta de datos de IoT por flujo
  • Verificación de conocimientos

  • Almacenamiento en la arquitectura de datos moderna
  • Almacenamiento en lago de datos
  • Almacenamiento de datos
  • Bases de datos diseñadas específicamente
  • Almacenamiento en apoyo pipeline
  • Almacenamiento seguro
  • Laboratorio: Almacenamiento y análisis de datos mediante Amazon Redshift
  • Verificación de conocimientos

  • Conceptos de procesamiento de big data
  • Apache Hadoop
  • Apache chispa
  • Amazon EMR
  • Administrar sus clústeres de Amazon EMR
  • Laboratorio: procesamiento de registros mediante Amazon EMR
  • Apache Hudi - Laboratorio: Actualización de datos dinámicos in sitio
  • Verificación de conocimientos

  • Conceptos de ML
  • El ciclo de vida del ML
  • Enmarcar el problema del ML para alcanzar el objetivo empresarial
  • Recolectando datos
  • Aplicar etiquetas a datos de entrenamiento con objetivos conocidos
  • Actividad: Etiquetado con SageMaker Ground Truth
  • Preprocesamiento de datos
  • Ingeniería de características
  • Desarrollar un modelo
  • Implementación de un modelo
  • Infraestructura de aprendizaje automático en AWS
  • Creador de sabios
  • Demostración: preparación de datos y entrenamiento de un modelo con SageMaker
  • Demostración: preparación de datos y entrenamiento de un modelo con SageMaker Canvas
  • Servicios de IA/ML en AWS

  • Considerar los factores que influyen en la selección de herramientas
  • Comparación de herramientas y servicios de AWS
  • Demostración: análisis y visualización de datos con AWS IoT Analytics y QuickSight
  • Selección de herramientas para un caso de uso de análisis de juegos
  • Laboratorio: Análisis y visualización de datos en streaming con Kinesis Data Firehose, OpenSearch Service y paneles de OpenSearch
  • Verificación de conocimientos

  • Automatización de la implementación de infraestructura
  • CI/CD
  • Automatización con funciones escalonadas
  • Laboratorio: Creación y orquestación de canalizaciones ETL mediante el uso de Athena y funciones de paso
  •  Verificación de conocimientos

  • Descripción general de la certificación AWS 

The AWS Certified Data Engineering - Associate (DEA -C01) course is designed to provide practical skills in the design, implementation and optimization of data pipes on AWS.

Under the practical Learning Method approach, participants will receive a cloud entrance pack to apply the concepts through workshops, laboratories and projects in real environments, and will use tools such as AWS GUE, Amazon Redshift, Kinesis, Dynamodb, SageMaker and AWS EMR. They will learn to design storage, processing and data analysis solutions for Big Data environments, Business Intelligence and Machine Learning.

This course is aimed at data engineers, data analysts, data scientists and ETL professionals who wish to be certified as AWS Certified Data Engineer Associate and develop key competitions in the cloud.

At the end of the course, participants will be able to:

  • Understand the infrastructure and AWS services for data, such as Amazon S3, RDS, Dynamodb, Redshift and Gue
  • Design and implement data pipes, optimizing intake, processing and storage
  • Apply principles of data safety and governance, ensuring compliance with regulations
  • Scale data solutions on AWS, implementing high -performance and low -cost architectures
  • Automatize ETL processes in AWS, using AWS GUE, Step Functions and Lambda
  • Optimize the performance in Big Data environments, with AWS EMR and Apache Spark
  • Implement data analysis solutions, integrating Amazon Athena, Quicksight and Kinesis
  • Prepare for AWS Certified Data Engineering - Associate certification, validating the mastery of the best data engineering practices in AWS

Courses

  1. International AWS certification cloud practices

To participate in this training, attendees must meet the following requirements:

  • Having taken the AWS Academy Cloud Foundations course in matrix classroom or demonstrating equivalent experience in AWS.
  • Basic knowledge in databases and SQL language.
  • Familiarity with concepts of storage, processing and data analysis.

These requirements ensure that participants can focus on applying knowledge acquired in real data environments.

International AWS Certified Data Engineering - Associate Applies
International AWS Certified Data Engineering - Associate 40 hours

Learning Methodology

The learning methodology, regardless of the modality (in-person or remote), is based on the development of workshops or labs that lead to the construction of a project, emulating real activities in a company.

The instructor (live), a professional with extensive experience in work environments related to the topics covered, acts as a workshop leader, guiding students' practice through knowledge transfer processes, applying the concepts of the proposed syllabus to the project.

The methodology seeks that the student does not memorize, but rather understands the concepts and how they are applied in a work environment.

As a result of this work, at the end of the training the student will have gained real experience, will be prepared for work and to pass an interview, a technical test, and/or achieve higher scores on international certification exams.

Conditions to guarantee successful results:
  • a. An institution that requires the application of the model through organization, logistics, and strict control over the activities to be carried out by the participants in each training session.
  • b. An instructor located anywhere in the world, who has the required in-depth knowledge, expertise, experience, and outstanding values, ensuring a very high-level knowledge transfer.
  • c. A committed student, with the space, time, and attention required by the training process, and the willingness to focus on understanding how concepts are applied in a work environment, and not memorizing concepts just to take an exam.

Pre-enrollment

You do not need to pay to pre-enroll. By pre-enrolling, you reserve a spot in the group for this course or program. Our team will contact you to complete your enrollment.

Pre-enroll now

Infinity Payments

Make your payment quickly, safely and reliably


- For bank transfer payments, request the details by email capacita@aulamatriz.edu.co.

- If you wish to finance your payment through our credit options
(Sufi, Cooperativa Unimos or Fincomercio), click on the following link:
Ver opciones de crédito.

To continue you must
Or if you don't have an account you must

Description

The AWS Certified Data Engineering - Associate (DEA -C01) course is designed to provide practical skills in the design, implementation and optimization of data pipes on AWS.

Under the practical Learning Method approach, participants will receive a cloud entrance pack to apply the concepts through workshops, laboratories and projects in real environments, and will use tools such as AWS GUE, Amazon Redshift, Kinesis, Dynamodb, SageMaker and AWS EMR. They will learn to design storage, processing and data analysis solutions for Big Data environments, Business Intelligence and Machine Learning.

This course is aimed at data engineers, data analysts, data scientists and ETL professionals who wish to be certified as AWS Certified Data Engineer Associate and develop key competitions in the cloud.

Objectives

At the end of the course, participants will be able to:

  • Understand the infrastructure and AWS services for data, such as Amazon S3, RDS, Dynamodb, Redshift and Gue
  • Design and implement data pipes, optimizing intake, processing and storage
  • Apply principles of data safety and governance, ensuring compliance with regulations
  • Scale data solutions on AWS, implementing high -performance and low -cost architectures
  • Automatize ETL processes in AWS, using AWS GUE, Step Functions and Lambda
  • Optimize the performance in Big Data environments, with AWS EMR and Apache Spark
  • Implement data analysis solutions, integrating Amazon Athena, Quicksight and Kinesis
  • Prepare for AWS Certified Data Engineering - Associate certification, validating the mastery of the best data engineering practices in AWS

Courses

To participate in this training, attendees must meet the following requirements:

  • Having taken the AWS Academy Cloud Foundations course in matrix classroom or demonstrating equivalent experience in AWS.
  • Basic knowledge in databases and SQL language.
  • Familiarity with concepts of storage, processing and data analysis.

These requirements ensure that participants can focus on applying knowledge acquired in real data environments.

offers

International AWS Certified Data Engineering - Associate Applies
International AWS Certified Data Engineering - Associate 40 hours

Learning Methodology

The learning methodology, regardless of the modality (in-person or remote), is based on the development of workshops or labs that lead to the construction of a project, emulating real activities in a company.

The instructor(live), a professional with extensive experience in work environments related to the topics covered, acts as a workshop leader, guiding students' practice through knowledge transfer processes, applying the concepts of the proposed syllabus to the project.

La metodología persigue que el estudiante "does not memorize", but rather "understands" the concepts and how they are applied in a work environment."

As a result of this work, at the end of the training the student will have gained real experience, will be prepared for work and to pass an interview, a technical test, and/or achieve higher scores on international certification exams.

Conditions to guarantee successful results:
  • a. An institution that requires the application of the model through organization, logistics, and strict control over the activities to be carried out by the participants in each training session.
  • b. An instructor located anywhere in the world, who has the required in-depth knowledge, expertise, experience, and outstanding values, ensuring a very high-level knowledge transfer.
  • c. A committed student, with the space, time, and attention required by the training process, and the willingness to focus on understanding how concepts are applied in a work environment, and not memorizing concepts just to take an exam.

Pre-enrollment

You do not need to pay to pre-enroll. By pre-enrolling, you reserve a spot in the group for this course or program. Our team will contact you to complete your enrollment.